
ت شبه نهایی درس : حسابان۲ بسمه تعالی آو بخ امتحان ۲۰/۱/۶ عد	سؤالا				
ازدهم دورهٔ دوم متوسطه رشته ریاضی فیزیک آموزش و برورش استان کرمانشاه می داد.	يايه دو				
ام خانوادگی : محمد محمد محمد مرکز سنجش و بابش کیفیت محمد از است کیفیت					
آموزان سراسر استان در فروردین ۱۴۰۲ آموزشی اور سال تعداد سوالات: ۲ صفحه مرد	دانش				
(نوبت صبح)	-				
امام علی (ع) فرمود: کسی که با دانش خود به پیکار با جهل خوبش برخیزد، به بالاترین خوشبختی می رسد اندا اسی مود بدر	امام علی (ع) فرمود: کسی که با دانش خود به پیکار با جهل خویش برخیزد، به بالاترین خوشیختی مر: رسف				
ف متن سؤالات صفحه ی اول					
درستی یا نادرستی عبارت های زیر را مشخص کنید.					
الف) تابع $f(x) = x^r - \hat{r}x$ روی بازه ی $[-r, \cdot]$ اکیدا صعودی است.					
ب) نقاطی به فرم $k \in x = k \pi + rac{\pi}{r}$, $k \epsilon z$ در دامنه تابع تانژانت قرار ندارند.					
پ) در شکل روبرو شیب خط مماس در نقطهA بیشتر از نقطه B است.					
ت) اگر $c=c$ طول اکسترمم نسبی تابع $f(x)$ باشد و $f'(c)$ موجود باشد آنگاه $f'(c)=0$ است.					
(c) = 0					
جاهای خالی را با عبارت مناسب کامل کنید.	r				
الف) اگر ۲ $f'(1) = -r$ و $f'(1)$ و $g'(1) = -r$ باشد، حاصل (۱) $f'(1) = r$ برابر با					
ب) در یک تابع مشتق پذیر، هر نقطه ای که در آن جهت تقعر تابع عوض شود آن نقطه تابع است.					
با کمک رسم نمودار تابع $y=\sqrt{x}$ ، نمودار تابع با ضابطه ی $f(x)=rac{1-x}{\sqrt{x}}$ را رسم کنید.					
چند جمله ای ۱ – x^{*} را به عامل ۱ – x تجزیه کنید.	4				
صعودی یا نژولی بودن تابع ۱ $ (x-1)^{r}$ را بررسی کنید.	۵				
شکل مقابل نمودار تابع $y = a\cos(bx)$ است. مقدار تابع را در نقطه $\frac{\sqrt{\pi}}{\sqrt{2}} = x$ محاسبه کثید، $y = a\cos(bx)$ اسا.	۶				
I.					
معادله مثلثاتی Sin [*] x = Cos [*] x + ۱ را حل کرده و جواب های کلی آن را بنویسید. ۲۰ ۵۵۵۵ = ۲۰ ۲۰۰۰ را ۵۷	. Y				
حدود زیر را محاسبه کنید.	٨				
$(\varphi) \lim_{x \to \tau} \frac{\tau_x}{x^{\tau} - \tau}$					
$\lim_{x \to r^+} \frac{ s - x^r }{x - r}$					
X-T	1				

	تاریخ امتحان : ۱۴۰۲/۰۱/۲۶	بسمه تعالى	راهنمای تصحیح درس حسابان۲	
	زمان امتحان : ۱۲۰ دقیقه	آموزش و پرورش استان کرمانشاه	پایه دوازدهم دورهٔ دوم متوسطه	
14-14 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	تعداد صفحات : صفحه تعداد سؤالات: ۱۷	مرکز سنجش و پایش کیفیت آموزشی (نوبت صبح)	دانش آموزان سراسر استان در فروردین ۱۴۰۲	
\bigcirc	······································		ا- الف) نادرمت (۲۰)	
	ت) روست (۲۵)		-) نادرت (۲۵)	
-				
\bigcirc			۲ – الف) ۲ (ا	
			\bigcirc	
			(10) cabenter (~	
(/v)				
	$f(x) = \frac{1-x}{1-\sqrt{x}}$	=> \x = 1 => x = 1	٣- تعين رامنم ب (مان)	
	$f(x) = \frac{1-x}{1-\sqrt{x}}$	$x \frac{1+\sqrt{2x}}{1+\sqrt{2x}} = \frac{(1-x)(1+\sqrt{2x})}{(1-x)}$	$(x) = 1 + \sqrt{x}$ (1)	
	بر مودر		,	
(v)	$\chi^2 - 1 = (\chi - 1)$	$\frac{1}{(n^{a}+n^{t}+n^{\mu}+n^{t}+x+1)}$) -14	
	\bigcirc	\bigcirc		
(ev)				
	$\chi_1 < \chi_5 \longrightarrow$	$x_1 - 1 < x_7 - 1$	=> -&	
	$(\chi_{1}-1)^{r} < (\chi_{1}-1)^{r}$	$-\gamma \kappa)^{*} = (\gamma \kappa)^{*}$	$(1)^{t} < -t(x_1 - 1)^{t}$	
	-r(xr-1) ^r -1	$< -r(x_1-1)^r - 1$		
	flore) <	f(x,) (1/10)		
		ار ب المعدا تردل		

	$T = \frac{\pi}{1} = \frac{1}{161} (\pi) \qquad (\pi = \pi b = 1) (\pi) = 1$
	$y_{max} = [a] + C = y y = [a] = y a = y (x_0)$
	$f(\frac{\sqrt{x}}{\sqrt{x}}) = 465 \left(\frac{4}{\sqrt{x}} + \frac{\sqrt{x}}{\sqrt{x}}\right) = 465 \left(\frac{\sqrt{x}}{\sqrt{x}}\right) = 465 \left(\frac{\sqrt{x}}{\sqrt{x}}\right) = 4x + \frac{1}{\sqrt{x}}$
(1) (1)	$\sin^{t}x = \cos^{t}x + 1 = 2$ $\sin^{t}x - \cos^{t}x = 1 - V$
	-GSTX = +1 (1)
	GSBZZ-I=GSZ (JO) => KX=KX+X NZKZ (JO)
	$\frac{-1}{x-r} = \lim_{x \to r^+} \frac{-(q-x^r)}{x-r} = \lim_{x \to r^+} \frac{-(q-x^r)}{x-r} = \lim_{x \to r^+} \frac{-1}{x-r} = \lim_{x \to r^+} \frac{-1}{x$
	$\frac{1}{\lambda - 1} \int \frac{1}{\lambda - 1} = \begin{cases} \lim_{x \to 1^+} \frac{1}{\lambda - 1} = \lim_{x \to 1^+} \frac{1}{x - 1} = \lim_{x \to 1^+} $
<u>(</u>)	$\frac{1}{1}$
	$\lim_{x \to -1^+} f(x) = 0^- \qquad \Longrightarrow \qquad \lim_{x \to -1^+} g(x) = \lim_{x \to -1^+} \sqrt{\frac{-t}{0}} = +\infty (T_0)$
	$\lim_{x \to -1^{-1}} f(x) = o^{+} = \lim_{x \to -1^{-1}} \lim_{x \to -1^{-1}} g(x) = \lim_{x \to -1^{-1}} \sqrt{\frac{-1}{2}} \int_{0}^{-1} \frac{1}{\sqrt{2}} \int_{0}^{-1}$
بت .	باتوم بر تحلیل نوی ا-= + عان کانم تاج و (می رات ۱-) ات می گرز "ب" مصبحاً

--

$$\begin{cases} (v) \\ ($$

$$(10) \qquad (11) \qquad$$

110 14- (۲۷) × ۲۲ = ۲۲ : باجگار سری قصب آلی 11 59 =) 57(11-y) = 1Xx ·Ko) (4-14 = x * $G_{1} = S = xy = (r_7 - r_7)y = r_7y - r_yr$ (10) 5'=· -, 44-7y=·=, 42=7y=>y=7 (1/0) * x= 42- 1×2= 42-1×=1× (1) -> S = 2y = 1/ x7 = 10/ (10) TRO $f(x) = \frac{-x}{x+t} - 1V$ $D_{f} = 1R - \{-r\}$ فین انتی I-= ۲ (۵) = - ۱ = (۵) = ا (NO) n-> ± 00 $\int \lim_{n \to -\pi^+} f(x) = +\infty$ $\int \lim_{n \to -\pi^+} f(x) = -\infty$ $\int \lim_{n \to -\pi^+} f(x) = -\infty$ (:10) (., 1) على برخورد با فحررها و ٥ = ٢ د ٥ = ٢ (1) Jy, (-1,+0), (-1,-0), (1-1,0) $f'(x) = \frac{-r}{(x+r)r} < \circ$ $f'(x) = \frac{7}{(x+t')} = \frac{3}{2} = \frac$ معاربهای حسب ناسد (18)

Scanned by CamScanner